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Abstract
In steady-state non-isentropic flows of perfect fluids, there is always
thermodynamic generation of vorticity when the difference between the product
of the temperature with the gradient of the entropy and the gradient of total
enthalpy is different from zero. We note that this property does not hold in
general for complex fluids for which the prominent influence of the material
substructure on the gross motion may cancel the thermodynamic vorticity. We
indicate the explicit condition for this cancellation (topological transition from
vortex sheet to shear flow) for general complex fluids described by coarse-
grained order parameters and extended forms of Ginzburg–Landau energies.
As a prominent sample case we treat first Korteweg’s fluid, used commonly
as a model of capillary motion or phase transitions characterized by diffused
interfaces. Then we discuss general complex fluids. We show also that, when
the entropy and the total enthalpy are constant throughout the flow, vorticity may
be generated by the inhomogeneous character of the distribution of material
substructures, and indicate the explicit condition for such a generation. We
discuss also some aspects of unsteady motion and show that in two-dimensional
flows of incompressible perfect complex fluids the vorticity is in general not
conserved, due to a mechanism of transfer of energy between different levels.

PACS numbers: 47.32.−y, 47.20.−k, 82.70.−y

1. Introduction and statement of the problem

For steady-state non-isentropic flows of perfect fluids, the following pointwise relation holds
throughout the regular region B of the three-dimensional Euclidean point space E occupied by
the fluid:

ω × v = ϑgrad η − grad H, (1)
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where v is the velocity of each material element (v = ṽ(x)), ω the vorticity (ω = curl v), ϑ the
temperature, η the entropy density, H the total enthalpy density (grad and curl are calculated
with respect to x ∈ B). Equation (1) is known as Crocco–Vaszony’s theorem (see [1–3]). It
states basically that we may observe thermodynamical generation of vorticity when

ϑgrad η − grad H �= 0. (2)

For complex fluids, for which the gross behaviour is influenced by a prominent presence
of material substructure, the condition (2) is no longer sufficient to assure vorticity and we
may have situations in which the effects due to the substructure cancel the thermodynamic
generation of vorticity, or may produce it even when the entropy and the total enthalpy are
constant.

In what follows we give explicit conditions for the occurrence of such a topological
transition, due to the complex structure of the fluid, from a vortex sheet to a shear flow and
vice versa1. To fix basic ideas, we consider first the simplest case of complex fluid, the
one of Korteweg, in which effects associated with the gradient of the specific volume are
accounted for. Then, we treat a general case (following the unified theory in [4]) in which
each material element at x, at time t, has an articulated morphology and can be considered as
a ‘system’, described by a coarse-grained order parameter ν, taken here as an element of an
‘abstract’ differentiable manifoldM to cover a class of complex fluids as large as possible. The
possible non-uniform distribution of the order parameters influences the formation of vorticity
during the flow. Finally, we discuss the unsteady case and show that in a two-dimensional
flow of incompressible perfect complex fluids the vorticity is in general not conserved (as in
simple perfect fluids) unless an explicit condition is satisfied. The influence of the material
substructure, rendering not conserved the vorticity, is not of viscous nature: there is just
a transfer of energy from the coarse-grained (macroscopic) level to the substructural one,
altering the macroscopic energetic landscape of the vorticity (that may generate possible drag
reduction in turbulent flows). This phenomenon implies the possibility that even in a two-
dimensional flow of complex fluids a vortex may be destroyed and, possibly, reconnected in
two or more subvortices.

For the sake of simplicity we do not consider applied external fields.

2. The case of Korteweg’s fluid

Motivated by the work of van der Walls and previous ideas of Lord Rayleigh and Gibbs,
to model at coarse scale the effects of interfacial tension in capillary phenomena, in 1901,
Korteweg [5] introduced a model of fluid in which the energy depends on the gradient of
the density. Experimental works have supported this approach [6–8] and the model has been
source of analytical investigations [9, 10]. A detailed critical review about this topic can be
found in [11]. The work of Korteweg has been the germ of a general modelling of ‘materials of
grade N’ in which higher order deformation gradients up to grade N are involved in constitutive
equations (see [12] for the general thermodynamic treatment). In 1993 Capriz [13] proved
clearly that the constitutive dependence on higher order ‘deformation’ gradients is an indicator
of the prominent presence of a complex material substructure which needs the introduction of
some order parameter, under the assumption of the existence of an internal constraint linking
the order parameter with the deformation (Korteweg’s model follows as a special case). Our
prominent interest in the present setting is not properly on capillary phenomena, the original
motivation of Korteweg’s model, rather it is focused on the circumstance that such a model

1 Such a kind of transition may occur in disparate circumstances, such as, e.g., geophysical flows [18].
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is currently used to represent phase transitions on the basis of a diffuse interface approach (see
[14] for a detailed review). In its simplest form, in fact, the free energy is of Cahn–Hilliard
type: the gradient of the mass density account for the free energy excess of the interfacial
region between phases. Such an excess of energy may influence the generation of vorticity in
non-isentropic flows: it may cancel or produce vorticity.

2.1. The main result about Korteweg’s fluids

Here we analyse the simplest case of complex fluid, i.e. the perfect Korteweg’s one: a
compressible perfect fluid characterized by the functional dependence of the potential φ on
the gradient grad ι of the specific volume ι (being ι = ι̃(x) = det g(x), with g(x) the metric in
space at x ∈ B, and grad is calculated with respect to x) in addition to ι itself; in other words,
we consider the case in which φ = φ(ι, grad ι, η), with φ a sufficiently smooth function.

In the following, we write formally φ(ι, grad ι, η) being conscious that since φ is a scalar
function depending on a vector (namely, grad ι), for reasons of objectivity (frame indifference
under the action of SO(3)) φ must depend on the vector grad ι only through its amplitude
|grad ι|. The simplest choice of φ is Cahn–Hilliard’s form: φ = f (ι, η) + 1

2β|grad ι|2, with β

some constant and f a function describing, e.g., a two-well energy; then φ may account for
the spinodal decomposition. We also indicate with ρ the current density of mass of the fluid
and consider the referential density ρ0 equal to 1 so that ι = ρ−1. In general, the Lagrangian
density of Korteweg’s fluid is considered to be given by

1
2ρ|v|2 + χ(ι, ι̇) − ρφ(ι, grad ι, η) (3)

for non-isentropic flows, where χ is a sufficiently smooth function such that ∂2
ι̇ι̇χ �= 0,

χ(ι, ι̇) � 0 and the equality sign holds when ι̇ = 0. The function χ accounts for possible
substructural inertia effects that may generate gradient inertia. In other words, the appearance
of the time derivative of ι, namely ι̇, in (3) is not of viscous nature, rather it is of inertial
nature and the physical dimensions of χ are those of a kinetic energy. Note that the kinetic
energy is the partial Legendre transform with respect to ι̇ of χ which is called kinetic co-
energy, following the terminology of [4]. The possible existence of gradient inertia effects in
Korteweg’s fluid has been pointed out in [13], however, these effects seem to be negligible
unless the fluid oscillates at very high frequencies. In any case we formally account for the
presence of χ in the following, because in the general setting treated below its effects may
be sensible.

Hereafter, the dot indicates the scalar product associated with the natural dual pairing;
moreover, we denote with ∂y the partial derivative with respect to the argument y and,
for different types of linear operators, with a superscript T we indicate the transposition
rendered explicit by a subsequent detailed expression in components, when the meaning of
the transposition is not immediately evident. For A and B tensors of the same order, A · B

indicates scalar product.
The main result of the present section is summarized in the proposition and the corollaries

below.

Proposition 1. For a steady-state non-isentropic flow of a Korteweg’s fluid, the following
pointwise relation holds:

ω × v = ϑgrad η − grad h − grad(ι2 div ρ∂grad ιφ + ∂grad ιφ · grad ι) + ι grad

(
d

dt
(∂ι̇χ) − ∂ιχ

)
.

(4)
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In equation (4), h is the total enthalpy density of Korteweg’s fluid and its explicit expression
is given in section 2.3.

Corollary 1. In a perfect Korteweg’s fluid, the gradient effects cancel the thermodynamic
generation of vorticity when

ϑgrad η − grad h = grad(ι2div ρ∂grad ιφ + ∂grad ιφ · grad ι) − ι grad

(
d

dt
(∂ι̇χ) − ∂ιχ

)
. (5)

Corollary 2. In the case in which both the specific entropy and the total enthalpy are constant
throughout the flow of a perfect Korteweg’s fluid, the gradient effects may generate vorticity:

ω × v = −grad(ι2div ρ∂grad ιφ + ∂grad ιφ · grad ι) + ι grad

(
d

dt
(∂ι̇χ) − ∂ιχ

)
. (6)

2.2. Preliminaries to perfect Korteweg’s fluids

2.2.1. Equilibrium. In the absence of body forces, the equilibrium of the fluid in B can be
determined by evaluating the variation of the functional

	 =
∫
B

ρφ(ι, grad ι) (7)

and putting it equal to zero, i.e.

δ̂

∫
B

ρφ(ι, grad ι) = 0 (8)

for any choice of δx, where δ̂ indicates the total variation (in the sense used in elementary
treatises when one deals with ‘total’ time derivatives), so that we have (see [4], p 31)

δ̂

∫
B

ρφ =
∫
B

δ(ρφ) +
∫

∂B
ρφn · δx

=
∫
B
(δ(ρφ) + div(ρφδx))

=
∫
B

ρδ̂φ (9)

where n is the outward unit normal to the boundary ∂B of B.
We note that

δ̂φ(ι, grad ι) = ∂ιφδ̂ι + ∂grad ιφδ̂ grad ι (10)

where δ̂ι and δ̂ grad ι are the total variations of the relevant arguments calculated taking into
account that ι varies in space. We have in fact

δ̂ι = ι div δx (11)

as a consequence of the Euler formula, and by the chain rule

δ̂ grad ι = grad δ̂ι − (grad δx)T grad ι (12)

(see [4] for other details). By developing the variation in (8), taking into account (10), (11)
and using the Gauss theorem repeatedly, we recognize that the arbitrariness of δx implies in
the bulk the pointwise balance

div T = 0 (13)
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(as the Euler–Lagrange equation) with

T = −pI − TE (14)

where I is the second-order unit tensor, p is a non-standard pressure given by

p = −ρι∂ιφ + ι div ρ∂grad ιφ (15)

and TE is a non-viscous stress of Ericksen’s type called in this context the Korteweg stress,
i.e.

TE = grad ι ⊗ ρ∂grad ιφ. (16)

2.2.2. Flows. Let us consider first isentropic flows. The dynamics of a Korteweg’s fluid can
be simply derived by making use of a Hamilton variational principle of the form

δ̂

∫ t̄

0

∫
b

(
1

2
|v|2 + χ(ι, ι̇)

)
−

∫ t̄

0
δ̂

∫
b

ρφ(ι, grad ι) = 0 (17)

where the time t runs in [0, t̄ ] and δ̂ means total variation as before. By developing (17), we
realize that the arbitrariness of δx implies the standard balance

ρ
dv
dt

= div T. (18)

The stress tensor T is of the form

T = −p̄I − TE (19)

but now the non-standard pressure p̄ accounts for kinetic pressure effects and is

p̄ = −ρι∂ιφ + ι div ρ∂grad ιφ − ρι
d

dt
∂ι̇χ + ∂ιχ (20)

while TE remains the same as (16).

2.3. Proof of proposition 1

We denote with q the amplitude of the velocity, i.e. q = |v|. Then, by using the standard
Lagrange formula

dv
dt

= ∂tv + (grad v)v = ∂tv + ω × v +
1

2
grad q2. (21)

We recognize that in the case of steady motion, i.e. when ∂tv = 0, the balance equation (18)
can be written as

ω × v = − 1
2 grad q2 − ι grad p̄ − ι div TE. (22)

When the flow is not isentropic, we may identify the potential φ with the internal energy
and write

φ = φ(ι, grad ι, η) (23)

η being the entropy density. From (23), we define the specific enthalpy density ξ as the
opposite of the partial Legendre transform of φ with respect to the kinematic variables, so that
we have

ξ = φ − ι∂ιφ − ∂grad ιφ · grad ι (24)

i.e. from (20),

ξ = φ + ιp̄ − ι2 div ρ∂grad ιφ + ιp̌ − ∂grad ιφ · grad ι (25)
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where

p̌ = ρι
d

dt
(∂ι̇χ) − ∂ιχ (26)

is the kinetic pressure due to possible gradient inertia effects. By indicating with ϑ the
temperature given by ∂ηφ, the calculation of the gradient of (25) allows us to obtain

−ι grad p̄ = ϑ grad η − grad ξ + ι grad p̌ − ι2 grad(div ρ∂grad ιφ)

− (grad ∂grad ιφ)T grad ι − ι(div ρ∂grad ιφ)grad ι. (27)

By inserting (27) in (22), taking into account that

div TE = (div ρ∂grad ιφ)grad ι + (ρ∂grad ιφ)grad2ι (28)

and defining the total specific enthalpy h of Korteweg’s fluid as

h = 1
2q2 + ξ (29)

we obtain (4) and proposition 1 is proved. The corollaries are immediate consequences.

3. General complex fluids

We follow here the unified setting proposed in [4] (and further discussed in [15] adding the
treatment of singular surfaces) with the aim of encompassing a class of complex flows as large
as possible. We then consider each material element as a subsystem collapsed into a place x
and described by a coarse-grained order parameter ν. We do not specify ν; we require only that
it belongs to a differentiable paracompact manifold M without boundary where we presume
that physical circumstances induce a single choice of metric and of connection. We have then

a sufficiently smooth mapping B � x
ν̃�−→ ν = ν̃(x)∈M.

We account for gradient effects, i.e. we consider the interaction between neighbouring
material elements under the suggestions of the results about Korteweg’s fluid. These weakly
non-local effects are the crucial mechanism altering the standard thermomechanical behaviour
of the vorticity.

Under previous assumptions, the Lagrangian density of a general complex fluid can be
written as

1
2ρ|v|2 + χ(ν, ν̇) − ρφ(ι, ν, grad ν, η) (30)

where the substructural kinetic co-energy χ (if perceptible in experiments) depends now
on ν and its rate, and the potential φ accounts for weak non-local gradient effects. The
contemporary presence of ν and grad ν in the constitutive list of entries of φ is not simply
a matter of choice of generality in the modelling (due, say, to a principle of equipresence),
rather it is of geometric origin. The manifold M is in general not trivial (in most cases of
physical interest it is not a linear space); the pair (ν̃, grad ν̃) collects the peculiar elements
of the tangent mapping T ν̃ : T B → TM between the tangent bundle of B and the one of
M. In general, the two elements cannot be separated invariantly unless M is endowed with a
parallelism. One asks also a physically significant parallelism. Even when M is Riemannian,
there is no immediate physical reason, in principle, prescribing that the consequent Levi-Civita
connection over M has a prevalent role even in exotic cases. Taking into account the possible
articulated geometry of M, in general we account for both ν and grad ν as entries of φ when
we decide to model interactions between neighbouring material elements.

We list just below some well-known special cases of our treatment to clarify the topic;
other cases are collected at the end of this section.
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(1) For nematic liquid crystals, ν is identified with a unit vector, say n, indicating the direction
of the prevailing nematic order of stick molecules at x; M is the unit sphere with the
identification of the antipodes and φ is the Oseen–Frank potential (see, e.g., [16]).

(2) For semi-dilute polymeric fluids, the material element is like a box containing a population
of polymer chains described by end-to-end vectors r and ν is identified at each x with
a second-order tensor, R, precisely the second-order moment of the distribution of the r
averaged over the population considered (see, e.g., [17]).

(3) The simplest reasonable form of φ is of Ginzburg–Landau’s type, namely φ =
γ (ι, ν, η) + 1

2a‖grad ν‖2, with a some appropriate constant and ‖grad ν‖ the norm of
grad ν̃(x) in Hom(TxB, TνM), the space of linear maps between the tangent space of B
at x and the tangent space of M at ν = ν̃(x).

Note that if we impose the internal constraint ι̃(x) = ν̃(x) we reduce the treatment to
Korteweg’s fluid.

3.1. The main result about complex fluids

By taking into account the structure (30) of the Lagrangian density, we may formulate the
natural generalization of proposition 1.

Proposition 2. For a steady-state non-isentropic flow of a general perfect complex fluid, the
following pointwise relation holds:

ω × v = ϑ grad η − grad hc − (grad ∂grad νφ)T grad ν

−
(

grad

(
div ∂grad νφ − d

dt
(∂ν̇χ) − ∂νχ

))T

ν

+ ι(grad ν)T div ∂grad νφ + ι(∂grad νφ)T grad grad ν (31)

where hc is the total enthalpy of the complex fluid defined below.

By indicating with α components on some chart over M and with i, j, . . . the standard
spatial components, (31) may be read as

(ω × v)i = ϑ(grad η)i − (grad hc)i −
(

grad

(
div ∂grad νφ − d

dt
(∂ν̇χ) − ∂νχ

))
iα

να

− (grad ∂grad νφ)
j

iα(grad ν)αj + ι(grad ν)αi (div ∂grad νφ)
j

αj

+ ι(∂grad νφ)jα(grad grad ν)αji . (32)

Corollary 3. In a perfect complex fluid, the presence of material substructure cancels the
thermodynamic generation of vorticity when

ϑgrad η − grad hc = (grad ∂grad νφ)T grad ν − ι(grad ν)T div∂grad νφ

+

(
grad

(
div ∂grad νφ − d

dt
(∂ν̇χ) − ∂νχ

))T

ν − ι(∂grad νφ)T grad grad ν. (33)

Corollary 4. In the case in which both the specific entropy and the total enthalpy are constant
throughout the flow of a perfect complex fluid, the presence of material substructure may
generate vorticity:

ω × v = −(grad ∂grad νφ)T grad ν + ι(grad ν)T div ∂grad νφ + ι(∂grad νφ)T grad grad ν

−
(

grad

(
div ∂grad νφ − d

dt
(∂ν̇χ) − ∂νχ

))T

ν. (34)
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3.2. Proof of proposition 2

3.2.1. Flows of isentropic perfect complex fluids. To obtain the field equations for general
complex fluids, we consider first the total Lagrangian

L =
∫
B

(
1

2
ρ|v|2 + χ(ν, ν̇) − ρφ(ι, ν, grad ν)

)
(35)

and set equal to zero the first total variation (in the sense of (10)) of its integral over the time
interval [0, t̄], namely

δ̂

∫ t̄

0
L = 0. (36)

We consider also that

δ̂ν = δν + (grad ν) δx (37)

in components

(δ̂ν)α = (δν)α + (grad ν)αi (δx)i (38)

and that ∫
B

ρδ̂φ =
∫
B

ρ(∂ιφδ̂ι + ∂νφ · δ̂ν + ∂grad νφ · δ̂grad ν). (39)

By using the Gauss theorem repeatedly, variations vanishing at the boundary of B and the
guidelines of section 2.2.1 (see also [4], pp 30–34), we obtain the following balances:

ρ
dv
dt

= div T (40a)

divS − z = d

dt
∂ν̇χ − ∂νχ (40b)

where the stress tensor T has in this case the form

T = ρι∂ιφI − (grad ν)T ∂grad νφ (41)

and we use S and z as

S = ρ∂grad νφ (42a)

z = ρ∂νφ (42b)

calling them microstress and self-interaction, respectively. The pointwise balance of
substructural interactions (40b) states that self-interactions z accrue within each material
element (due to its substructure) to balance the ‘contact’ interactions S between neighbouring
material elements (due to the relative change of substructure). At each x, z is an element of
the cotangent space T ∗

ν M while S belongs to Hom
(
T ∗

x B, T ∗
ν M

)
. As for the pair (ν, grad ν),

even in this case the non-trivial structure of M does not allow us to separate invariantly the
microstress from the self-interaction, in general. However, when an appropriate parallelism
permits us to select an explicit form of φ depending on the sole grad ν and substructural
inertia effects are negligible, equation (40b) reduces to a divergence form. For example, such
a situation happens in the special case of nematic liquid crystals when we select just the
simplest Frank’s potential and reduce ourselves to investigate only the physics described by
harmonic maps taking values in S2 [19].

As anticipated in discussing the special case of Korteweg’s fluid, the kinetic co-energy
χ(ν, ν̇) is such that its Legendre transform with respect to the rate ν̇ coincides with the
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substructural kinetic energy k(ν, ν̇), i.e. k = ∂ν̇χ · ν̇ − χ . Its contribution may be in general
sensible. Note that, even when k(ν, ν̇) is of the form 1

2 ν̇α�αβ ν̇β , the explicit form of χ

differs from k by an addendum of the type λαν̇α , which may be helpful to describe some
prominent physical effects. For example, in the case of magnetizable fluids, if we select the
magnetization vector as order parameter and constrain its rate to be of gyroscopic nature, we
reduce (40b) to the equation of Gilbert.

3.2.2. Details about proposition 2. When the flow is not isentropic, the potential is of the
form

φ = φ(ι, ν, grad ν, η) (43)

and we define (as in (24)) the specific enthalpy density ξc of a complex fluid as the opposite
of the partial Legendre transform with respect to the morphological descriptors, namely

ξc = φ − ι∂ιφ − ∂νφ · ν − ∂grad νφ · grad ν. (44)

We may also rewrite the term −ι∂ιφ as ιp̃, where p̃ is the pressure relevant for this case, given
by −∂ιφ. Equation (22) becomes

ω × v = − 1
2 grad q2 − ι grad p̃ − ι div T̄E

(45)

with

T̄E = (grad ν)T ∂grad νφ (T̄E
)
j

i = (grad ν)αi (∂grad νφ)jα. (46)

Then we get

div T̄E = (grad ν)T div ∂grad νφ + (∂grad νφ)T grad grad ν. (47)

The gradient of (44) allows us to write also

−ι grad p̃ = ϑ grad η − grad ξc − (grad ∂νφ)T ν − (grad ∂grad νφ)T grad ν. (48)

By inserting (48) and (47) into (45) and taking into account (40b) and (42b), we get
proposition 2 where

hc = 1
2q2 + ξc. (49)

The corollaries are immediate.

3.3. Further special cases

Well-known cases covered by our general modelling have been listed at the beginning of
section 3, namely nematic liquid crystals and polymeric fluids, and we may also mention
ferrofluids once, in the presence of external electric fields, we add to φ the electromagnetic
energy and develop appropriate variations of the relevant fields.

We may also investigate more exotic cases by making use of the flexibility of the general
unifying framework in which we act. Some examples are listed below, but they do not exhaust
the range of possibilities.

(1) Smectic-A liquid crystals. In the smectic-A phase, liquid crystals appear organized in
layers in which stick molecules tend to be aligned orthogonally to the layer interface.
Within each layer the molecules flow freely; in the orthogonal direction (where the
behaviour is basically that of a one-dimensional crystal) they may permeate from one layer
into another. Linear [20] and non-linear [21–23] continuum models have been formulated
to describe various aspects of the elasticity and hydrodynamics of the smectic-A phase,
paying some attention to the behaviour of possible vortices there. Since the current
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formulation of the hydrodynamics of smectic-A liquid crystals falls within the general
setting discussed here, under the conditions of proposition 2 and subsequent corollaries,
we could foresee formation or cancellation of vortices. In fact, natural ingredients for
modelling the smectic-A phase are a vector n ∈ S2 at each x ∈ B describing the local
orientational order and a scalar function w parametrizing the layers. More precisely, we
may write [23] w(x, t, aλ), with λ an appropriate length scale and a running in a set of
integers, to account for possible unequal spacing of layers. However, at a (gross) coarse-
grained scale, we may imagine that w(x, t, ·) is defined in a continuum approximation
on an interval of the real line so that, as shown in [23], |grad w|−1 measures the current
thickness of the layers. Then, we can select the order parameter as the pair (n, w);
however, in the absence of tilt (a condition reasonable outside the defect core) we have
strictly

n = grad w

|grad w| (50)

and the simplest choice for the potential φ in the compressible case is of the form (see
[22])

φ(ι, w, grad w) = φ̄(ι) + 1
2γ1(|grad w| − 1)2 + 1

2γ2(div n)2 (51)

with the identification (50) and with γ1 and γ2 material constants. In (51), the term
(|grad w|−1)2 accounts for the compression of layers while (div n)2 describes the nematic
phase and is the first addendum of (three constant) Frank’s potential (see [3], p 55).
Inertial effects can be considered by putting χ = 1

2ρα|ṅ|2, with α a material constant
[23]. The special counterparts of (31), (33) and (34), associated with (51), follow after
straightforward calculations. To simplify the matter further, one may imagine having an
incompressible flow, neglecting φ̄(ι), a circumstance not incompatible with the assumed
compressibility of the layers. Taking into account the incompressible limit of (51), namely
φ(w, grad w), the application of proposition 2, in the absence of prominent substructural
inertia of stick molecules in the smectic-A phase, leads to

ω × v = ϑgrad η − grad hc − (gradS)T grad w − w grad(divS)

+ ι divS(grad w) + ιS(grad grad w) (52)

with

S = γ1(|grad w| − 1)n − γ2|grad w|−1(I − n ⊗ n)grad(div n) (53)

and I is the second-order unit tensor.
(2) Polyelectrolyte polymers and polymer stars. In the case of polyelectrolyte polymers

suffering possible polarization, we may imagine to assign at each point x ∈ B not only the
dyadic tensor R, mentioned at the beginning of section 3, but also a polarization vector
p. By indicating with Vec the translation space over E , and with Bp a ball of Vec centred
at zero and with radius equal to p, the maximum amplitude of the polarization, we have
M = Hom(Vec, Vec) × Bp and we may construct the relevant hydrodynamic theory,
once an explicit expression for φ has been selected (see examples in [17]), adding, in
the presence of external electric fields, the electromagnetic energy. When we consider
also polymer stars, the picture becomes more articulated and we may imagine having
M = Hom(Vec, Vec) × Bp × [0, b]. In this case, at each x ∈ B, an arbitrary element
of the interval [0, b] of the real line describes the radius of gyration of the polymeric
molecules.
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(3) Superfluid helium 4He. The work of Rasetti and Regge [24] allows us to manage suitable
Poisson brackets to describe ‘directly’ the dynamics of vortices in superfluid helium (see
also the developments in [25]). However, following the suggestions of [4] (p 7), we may
choose to adopt the general point of view used here and to select M = S1 ⊂ C, using
in this way a potential φ with a Ginzburg–Landau structure with complex entries. The
application of proposition 2 and subsequent corollaries follows.

4. Concluding remarks

In the case of Korteweg’s fluid, diffuse interfaces modelled by the specific volume may
generate an energetic wall against the thermodynamic formation of vorticity. However, there
are conditions for which such an excess of energy may favour vorticity even for an isentropic
flow.

Analogous phenomena occur in the case of general complex fluids. Note that, excluding
possible inertial terms associated with χ , the gradient of ν and the derivative of φ with respect
to grad ν are prominent ingredients in the vorticity equation (31). This circumstance suggests
that inhomogeneous spatial distributions of substructures (preferably with high gradients) in
steady-state flows may generate energetic barriers to vorticity or may favour it. Basically, the
energy involved is that associated with weakly non-local interactions between neighbouring
material elements.

For non-stationary incompressible two-dimensional flows the vorticity is in general not
conserved even in the perfect case due to a mechanism of transfer of energy between the
coarse-grained level and the substructural one, ruled by the tensor TE . In fact, if we calculate
the curl of (40a) taking into account (41), we get

dω

dt
= (ω · grad)v + grad ι × div T − ι curl(div TE). (54)

When the fluid is incompressible, the addendum grad ι × div T vanishes, and in a two-
dimensional flow we have also (ω · grad)v = 0, but the vorticity is still altered by the
term −ι curl(div TE), which is different from zero except when (i) there exists a scalar field
B � x �−→ π(x) such that grad π = div TE , or (ii) there exists a second-order tensor-valued
field B � x �−→ A(x) ∈ Hom(Vec, Vec) such that curl(TE)T = (curl A)T. So that, in time-
dependent states, even in a two-dimensional flow of an incompressible perfect complex fluid
the vorticity can be altered with consequent generation of topological transitions.

Experiments confirming the theoretical predictions of the present paper in some special
case could be useful towards the understanding of complex fluids.
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